3220/202 SCOTTISH CERTIFICATE OF EDUCATION 1999 FRIDAY, 14 MAY 1.00 PM - 3.30 PM PHYSICS HIGHER GRADE Paper II #### Read carefully - 1 All questions should be attempted. - 2 Enter the question number clearly in the margin beside each question. - 3 Any necessary data will be found in the Data Sheet on page two. - 4 Care should be taken not to give an unreasonable number of significant figures in the final answers to calculations. - 5 Square-ruled paper (if used) should be placed inside the front cover of the answer book for return to the Scottish Qualifications Authority. ## DATA SHEET ## COMMON PHYSICAL QUANTITIES | Quantity | Symbol | Value | Quantity | Symbol | Value | |--|--------|--|----------------------------------|------------|---| | Speed of light in vacuum Charge on electron | c
e | $3.00 \times 10^8 \mathrm{m \ s}^{-1}$
$-1.60 \times 10^{-19} \mathrm{C}$ | Mass of electron Mass of neutron | $m_{ m e}$ | $9.11 \times 10^{-31} \text{ kg}$
$1.675 \times 10^{-27} \text{ kg}$ | | Gravitational
acceleration
Planck's constant | g
h | 9.8 m s^{-2}
$6.63 \times 10^{-34} \text{ J s}$ | Mass of proton | $m_{ m p}$ | 1.·673 × 10 ⁻²⁷ kg | ## REFRACTIVE INDICES The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K. | Substance | Refractive index | Substance | Refractive index | |-------------|------------------|-----------|------------------| | Diamond | 2.42 | Glycerol | 1.47 | | Crown glass | 1.50 | Water | 1.33 | | Ice | 1.31 | Air | 1.00 | | Perspex | 1.49 | | | ## SPECTRAL LINES | Element | Wavelength/nm | Colour | Element | $Wavelength/{ m nm}$ | Colour | |------------|-----------------------|----------------------------------|----------------|----------------------|----------------------| | Hydrogen | 656
486
434 | Red
Blue-green
Blue-violet | Cadmium | 644
509
480 | Red
Green
Blue | | 410
397 | Violet
Ultraviolet | Lasers | | | | | | 389 | Ultraviolet | Element | Wavelength/nm | Colour | | Sodium | 589 | Yellow | Carbon dioxide | 9550
10590} | Infrared | | | | | Helium-neon | 633 | Red | ## PROPERTIES OF SELECTED MATERIALS | Substance | Density/
kg m ⁻³ | Melting Point/
K | Boiling
Point/
K | Specific Heat
Capacity/
J kg ⁻¹ K ⁻¹ | Specific Latent Heat of Fusion J kg ⁻¹ | Specific Latent Heat of Vaporisation/ J kg ⁻¹ | |-----------|--------------------------------|---------------------|------------------------|--|--|---| | Aluminium | 2.70×10^3 | 933 | 2623 | 9.02×10^{2} | 3.95×10^{5} | | | Copper | 8.96×10^{3} | 1357 | 2853 | 3.86×10^2 | 2.05×10^5 | | | Glass | 2.60×10^{3} | 1400 | | 6.70×10^2 | | | | Ice | 9.20×10^{2} | 273 | | 2.10×10^{3} | 3.34×10^{5} | | | Glycerol | 1.26×10^{3} | 291 | 563 | 2.43×10^{3} | 1.81×10^{5} | 8.30×10^{5} | | Methanol | 7.91×10^{2} | 175 | 338 | 2.52×10^{3} | 9.9×10^4 | 1.12×10^6 | | Sea Water | 1.02×10^{3} | 264 | 377 | 3.93×10^{3} | | | | Water | 1.00×10^3 | 273 | 373 | 4.19×10^3 | 3.34×10^5 | 2.26×10^6 | | Air | 1.29 | | | | | | | Hydrogen | 9.0×10^{-2} | 14 | 20 | 1.43×10^4 | | 4.50×10^{5} | | Nitrogen | 1.25 | 63 | 77 | 1.04×10^{3} | | 2.00×10^{5} | | Oxygen | 1.43 | 55 | 90 | 9.18×10^{2} | | 2.40×10^{5} | The gas densities refer to a temperature of 273 K and a pressure of 1.01×10^5 Pa.