3220/202

SCOTTISH CERTIFICATE OF EDUCATION 1999 FRIDAY, 14 MAY 1.00 PM - 3.30 PM PHYSICS HIGHER GRADE Paper II

Read carefully

- 1 All questions should be attempted.
- 2 Enter the question number clearly in the margin beside each question.
- 3 Any necessary data will be found in the Data Sheet on page two.
- 4 Care should be taken not to give an unreasonable number of significant figures in the final answers to calculations.
- 5 Square-ruled paper (if used) should be placed inside the front cover of the answer book for return to the Scottish Qualifications Authority.

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum Charge on electron	c e	$3.00 \times 10^8 \mathrm{m \ s}^{-1}$ $-1.60 \times 10^{-19} \mathrm{C}$	Mass of electron Mass of neutron	$m_{ m e}$	$9.11 \times 10^{-31} \text{ kg}$ $1.675 \times 10^{-27} \text{ kg}$
Gravitational acceleration Planck's constant	g h	9.8 m s^{-2} $6.63 \times 10^{-34} \text{ J s}$	Mass of proton	$m_{ m p}$	1.·673 × 10 ⁻²⁷ kg

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Crown glass	1.50	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49		

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	$Wavelength/{ m nm}$	Colour
Hydrogen	656 486 434	Red Blue-green Blue-violet	Cadmium	644 509 480	Red Green Blue
410 397	Violet Ultraviolet	Lasers			
	389	Ultraviolet	Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide	9550 10590}	Infrared
			Helium-neon	633	Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density/ kg m ⁻³	Melting Point/ K	Boiling Point/ K	Specific Heat Capacity/ J kg ⁻¹ K ⁻¹	Specific Latent Heat of Fusion J kg ⁻¹	Specific Latent Heat of Vaporisation/ J kg ⁻¹
Aluminium	2.70×10^3	933	2623	9.02×10^{2}	3.95×10^{5}	
Copper	8.96×10^{3}	1357	2853	3.86×10^2	2.05×10^5	
Glass	2.60×10^{3}	1400		6.70×10^2		
Ice	9.20×10^{2}	273		2.10×10^{3}	3.34×10^{5}	
Glycerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^4	1.12×10^6
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}		
Water	1.00×10^3	273	373	4.19×10^3	3.34×10^5	2.26×10^6
Air	1.29					
Hydrogen	9.0×10^{-2}	14	20	1.43×10^4		4.50×10^{5}
Nitrogen	1.25	63	77	1.04×10^{3}		2.00×10^{5}
Oxygen	1.43	55	90	9.18×10^{2}		2.40×10^{5}

The gas densities refer to a temperature of 273 K and a pressure of 1.01×10^5 Pa.