X069/301

NATIONAL QUALIFICATIONS 2003 MONDAY, 19 MAY 1.00 PM - 3.30 PM PHYSICS HIGHER

Read Carefully

1 All questions should be attempted.

Section A (questions 1 to 20)

- 2 Check that the answer sheet is for Physics Higher (Section A).
- 3 Answer the questions numbered 1 to 20 on the answer sheet provided.
- 4 Fill in the details required on the answer sheet.
- 5 Rough working, if required, should be done only on this question paper, or on the first two pages of the answer book provided—**not** on the answer sheet.
- 6 For each of the questions 1 to 20 there is only **one** correct answer and each is worth 1 mark.
- 7 Instructions as to how to record your answers to questions 1–20 are given on page three.

Section B (questions 21 to 29)

- 8 Answer questions numbered 21 to 29 in the answer book provided.
- 9 Fill in the details on the front of the answer book.
- 10 Enter the question number clearly in the margin of the answer book beside each of your answers to questions 21 to 29.
- 11 Care should be taken to give an appropriate number of significant figures in the final answers to calculations.

DATA SHEET COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	с	3.00×10^8 m s ⁻¹	Mass of electron	$m_{ m e}$	$9.11 \times 10^{-31} \mathrm{kg}$
Magnitude of the charge on an electron	e	$1.60 \times 10^{-19} \text{ C}$	Mass of neutron	$m_{ m n}$	$1.675 \times 10^{-27} \text{ kg}$
Gravitational acceleration on Earth Planck's constant	g h	9.8 m s^{-2} $6.63 \times 10^{-34} \text{ J s}$	Mass of proton	$m_{ m p}$	$1.673 \times 10^{-27} \mathrm{kg}$

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Refractive index	Substance	Refractive index
2.42	Water	1.33
1.50	Air	1.00
	2·42	2·42 Water

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	656 486 434	Red Blue-green Blue-violet	Cadmium	644 509 480	Red Green Blue
	410 397	Violet Ultraviolet	Lasers		
	389	Ultraviolet	Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide	9550 10590	Infrared
			Helium-neon	633	Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density/ kg m ⁻³	Melting Point/ K	Boiling Point/ K
Aluminium	2.70×10^3	933	2623
Copper	8.96×10^3	1357	2853
Ice	9.20×10^{2}	273	
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^3	273	373
Air	1.29		
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of 1.01×10^5 Pa.